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FRÉDO DURAND

Computer Science and Artificial Intelligence Lab, MIT

and
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This article introduces a programmable approach to nonphotorealistic line drawings from 3D models, inspired by programmable shaders in traditional rendering.
This approach relies on the assumption generally made in NPR that style attributes (color, thickness, etc.) are chosen depending on generic properties of the
scene such as line characteristics or depth discontinuities, etc. We propose a new image creation model where all operations are controlled through user-defined
procedures in which the relations between style attributes and scene properties are specified. A view map describing all relevant support lines in the drawing
and their topological arrangement is first created from the 3D model so as to ensure the continuity of all scene properties along its edges; a number of style
modules operate on this map, by procedurally selecting, chaining, or splitting lines, before creating strokes and assigning drawing attributes. Consistent access
to properties of the scene is provided from the different elements of the map that are manipulated throughout the whole process. The resulting drawing system
permits flexible control of all elements of drawing style: First, different style modules can be applied to different types of lines in a view; second, the topology
and geometry of strokes are entirely controlled from the programmable modules; and third, stroke attributes are assigned procedurally and can be correlated
at will with various scene or view properties. We illustrate the components of our system and show how style modules successfully encode stylized visual
characteristics that can be applied across a wide range of models.
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1. INTRODUCTION

1.1 Motivation and Approach

Art offers great flexibility in representation. Working with elements
such as color and geometry, artists have long used this flexibility to
fulfill goals of abstraction, simplification, or emphasis that make il-
lustration popular and useful. The way each artist uses this freedom
defines his visual identity, his style. In NonPhotorealistic Render-
ing (NPR), while many techniques enable the creation of compelling
images [Gooch and Gooch 2001; Strothotte and Schlechtweg 2002],
the control given to the user over the rendering style is insufficient
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and is generally limited to a fixed set of attributes. The approach pre-
sented in this article serves two objectives: first, it provides the user
with as much control as possible over the rendering style and, sec-
ond, it ensures separation between style and content, making style
descriptions reusable with any 3D scene. We conduct our analysis
of style using techniques inspired by modern linguistics, similar to
Willats’ [1997] and Durand’s [2002; Willats and Durand 2005].

We choose to focus on line drawings for still pictures and more
precisely on contour drawings. We leave aside all aspects of shad-
ing, including hatching lines or shadow lines. Contour drawing of-
fers a great variety of styles and is often the preferred technique
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for abstraction. In addition, the line as a 1-dimensional primi-
tive presents substantial differences with classic 0-dimensional pix-
els of computer graphics and therefore represents an intriguing
challenge.

Our approach contributes to improving style control within the
standard object-space NPR pipeline for line drawings from 3D
scenes. This pipeline is made of the following stages: first, feature
lines are extracted from the 3D model and properties of the scene
such as visibility are computed. Then, stylized strokes are built from
these feature lines. The final image is obtained by rendering these
strokes. Line drawing simplification can optionally be done at this
step by omitting superfluous strokes.

Our model for image creation relies on the postulate that style
attributes (e.g., stroke thickness or line omission) are not chosen
randomly by the artist but partly depend on properties of both the
scene (e.g., nature of lines, distance to the viewer) and the drawing
(e.g., local density of strokes). This postulate is implicitly assumed
by many previous NPR algorithms for style depiction, such as Sousa
and Prusinkiewicz [2003] and Gooch et al. [1998], however, it was
never explicitly exploited nor articulated. In contrast, we make this
assumption the cornerstone of our approach and explore the flexibil-
ity it offers. To develop an intuition for this postulate, we consider
a few real illustrations and try to articulate their style.

The style of Figure 1(a) is characterized by the use of different
line weights in the drawing. The weight is stronger when the line
marks a larger depth discontinuity, that is, as the two surface patches
adjacent to this line in the image plane are further from one another
in the view direction.

In Figure 1(b), the artist brings forward the character by shorten-
ing the background lines, creating a “halo” effect. This time, it is
the “line adjacency” property that is used to decide if a line must be
shortened.

In Figure 1(c), despite the perspective effect that tends to cause
line clutter, the overall illustration remains clear. The artist omits
lines in regions where visual complexity is already high, thus main-
taining a constant low density. This can best be seen on the paved
ground. Here the line omission style attribute is correlated to the
density property.

In this article we show that the programmable approach follows
naturally from these considerations and represents an efficient way
to get both flexible control over style and separation between style
and content.

We chose to dedicate our approach to static image depiction,
which means that it does notinclude any special treatment for ani-
mation such as the maintenance of temporal coherence from frame
to frame [Kalnins et al. 2003; Bourdev 1998]. This choice is dis-
cussed further in Section 7.

1.2 Overview

Our main contribution is the introduction of a programmable ap-
proach to describe style in non photorealistic rendering of line draw-
ings. More specifically, our contributions include:

—a control over style attributes of strokes, including high-level at-
tributes like stroke topology;

—the identification of properties of the scene useful to style descrip-
tion;

—a structure for feature lines, the view map, that is flexible, com-
pact, and provides the shader writer with a relevant access to scene
property values;

—a new formalization of the drawing process as a sequence of
programmable operations;

Fig. 1. These three drawings illustrate the postulate that style attributes
are related to properties of the scene and the drawing. (a) Here, the main
characteristic of the style is the subtle use of different line weights based on
depth discontinuity. Image from “13 Chambers,” courtesy of Denis Medri,
c© Denis Medri. (b) The artist creates a “haloing” effect by deliberately

shortening the strokes around the main character: style relies partly on the
property of adjacency between the different lines of the drawing. Image from
“Persepolis,” courtesy of Marjane Satrapi, c© L’Association. (c) The artist
avoids clutter around the vanishing point by omitting lines as the drawing
density becomes too high: The line omission style attribute is driven by the
density property. Image from “Nestor Burma,” courtesy of Jacques Tardi,
c© Casterman.

—the specification of line density measures for automatic line draw-
ing simplification.

The general scheme of our approach is shown Figure 2. The input
to the pipeline is a 3D mesh and the output is a set of stylized strokes
that can be rendered as an image.

User interaction only takes place at the style sheet creation stage
(orange arrow in Figure 2).

In the first phase we extract feature lines from the 3D scene. In
our implementation, we include silhouettes, creases, borders, and
suggestive contours [DeCarlo et al. 2003]. In practice, these feature
lines are the real input to our method and nothing is assumed about
their computation. Any set of 3D lines lying on the surfaces of the
scene is a valid input.

At the same time, relevant properties are computed on the scene
and cached for further access in the style description. Section 2.2
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Fig. 2. General pipeline.

presents the set of properties we consider to be useful for describing
style.

The feature lines are broken/merged to ensure continuity of the
scene properties, and are then structured as a planar graph to reflect
their 2D spatial organization in the view. The resulting graph, called
the view map, is defined in Section 3. We also show how scene prop-
erty values can be queried appropriately from view map elements.
The view map is a versatile input structure to 3D-based line drawing
systems and is not conditioned by the programmable aspect of our
approach. Section 3 is therefore relevant to any reader concerned
with the development of 3D line drawing software.

Next, using a set of operators, the user programs the style sheet
which describes how edges of the view map should be turned into
strokes based on the scene properties provided by the system. In par-
ticular, all style attributes such as color or thickness (see Section 2.1)
are set through this process. Each operator is programmable in the
sense that it is, either completely or partially, defined by the user.
Section 4 presents the set of operators proposed to describe style, and
their organization as a pipeline. This section is relevant to readers
interested in the “shading language” itself.

Section 6 provides concrete examples and demonstrates the
variety and quality of the styles afforded by our approach. Finally,
in Section 7 we discuss the limitations and possible extensions of
our approach.

The software (Freestyle) that was developed to support this re-
search was released under the GPL license. All the source for both
the system itself and the shaders can be found on the project Web site:
http://freestyle.sourceforge.net. The Web site also contains prebuilt
binaries for certain platforms and additional results. There is an on-
going effort to integrate Freestyle to the Blender package and many
impressive results generated by artists of the Blender community
can be found on Blender forums (e.g., http://blenderartists.org).

1.3 Link to the Authors’ Previous Work

This article is an extension of a previous publication at the Eu-
rographics symposium on rendering [Grabli et al. 2004a]. In
Section 2.3 we also include a brief summary of the main ideas pre-
sented in our Pacific Graphics paper [Grabli et al. 2004b] which
defines density measures that are essential to line clutter control, a
significant aspect of line drawing that we believe is best expressed

though our programmable system. The rest of the article extends
our EGSR paper.

Section 3 is mostly new and gives a comprehensive description of
the structure central to our approach, the view map. It also more thor-
oughly discusses the critical problem of access to scene property val-
ues from points and lines. Other key differences include Section 4.2,
which motivates the choice of our basis of operators and Section 4.3
which addresses the possible organization of these operators as
a pipeline. Section 6 presents several new illustrations, including
code, pseudocode, and figures. Finally, as a result of the review
process, the vocabulary used in this article is slightly different from
that of our previous articles. In particular, we use the term “properties
of the scene” in place of “information from the scene” to describe
the various quantities computed on the scene (e.g., depth, position).

1.4 Related Work

Style has received much attention in NPR and is addressed in a
great variety of papers. The approaches that relate specifically to
our work can be divided into three categories: automatic, interactive,
and mixed approaches.

Automatic approaches are the typical “black box” approaches:
The style recipe is embedded in the rendering engine which can
then render any 3D scene in the target style. The main advantage
of these approaches is that style is not bound to a particular scene
and can be reused automatically with any 3D model. On the other
hand, each system targets a particular style over which the user has
a fairly poor control, generally limited to a few parameter knobs.
In particular, a significant change in the rendering style can only be
obtained by developing another black box encoding a different style.
Our approach builds upon the wealth of techniques falling into that
category, such as Goodwin et al. [2007], Sousa and Prusinkiewicz
[2003], Way et al. [2002], Kowalski et al. [1999], Gooch et al. [1998],
and Winkenbach and Salesin [1994] but aims at offering the user
more control over the rendering style.

Interactive approaches consist in modeling a style by interact-
ing directly on the scene, in the spirit of drawing software such as
IllustratorTM or PhotoshopTM. The visual attributes of the feature lines
can usually be set through a graphical user interface which gives the
user flexible and intuitive control over the style of the drawing. How-
ever, the resulting style is tied to the scene on which it was designed
and can at best be used for an animated sequence, but not to ren-
der different scenes. The main research system implementing this
approach was presented by Kalnins et al. [2002]. In contrast, our ap-
proach requires a programming task from the user: Style is explicitly
articulated and, as a result, can be applied to any 3D scene. Kalnins
et al.’s system additionally permits one to specify stroke style in
an example-based manner: The user sketches a stroke whose style
attributes are then learnt by the system and automatically replicated
to other feature lines. We refer to such semi-interactive techniques
as mixed approaches and discuss them in the next section.

Mixed approaches combine an interactive aspect through an edit-
ing stage and an automatic aspect through the rendering engine.
During the editing stage the user interactively specifies a template
of style, which is then used to automatically provide stylistic direc-
tions during rendering on any 3D scene.

So far, the techniques most commonly chosen for the editing stage
are based on statistics and consist in learning the style, or part of the
style, from examples. For instance, Hamel and Strothotte [1999]
build histograms during an interactive session to correlate simple
style attributes of hatching lines (e.g., thickness) with some proper-
ties of the scene (e.g., 3D curvature). These histograms serve as a
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style template used to infer the style attributes when rendering other
3D scenes. In the same spirit, Hertzman [2002] focuses on learn-
ing statistical models of 2D curves to reproduce subtle geometry
variations from an example curve.

Example-based approaches are intuitive and require little work
from the user. However, we believe that only low-level aspects of
style can be well captured this way, and many works have shown that
subtle variations at the global level can result in significant changes
in style [Winkenbach and Salesin 1994; Durand et al. 2001; Hertz-
mann 2001; DeCarlo and Santella 2002]. Our approach belongs to
the mixed-approaches category, but in contrast to the example-based
strategy, we obtain more flexibility by requiring the user to make all
aspects of style explicit.

Dooley and Cohen [1990] describe a mixed approach in which the
style rules are explicitely specified by the user. Their system focuses
on technical illustrations and is limited to a smaller number of scene
properties and style attributes than ours, making it possible for the
user to specify style rules interactively through a graphical user
interface. By leveraging a programmable approach, it is possible to
provide a more fundamental basis of operators and to handle a larger
number of scene properties as well as more complex style attributes.
As a result, users of our system can describe more elaborate style
rules and produce a greater variety of illustrations.

The work that most inspires our approach is the Renderman pro-
gramming interface [Upstill 1989; Apodaca and Gritz 1999; Hanra-
han and Lawson 1990; Cook 1984] and more precisely its shading
language which permits the design of an infinite variety of rich
and complex appearances. Quoting Upstill: “The key idea in the
Renderman Shading Language is to control shading, not only by
adjusting parameters, but by telling the shader what you want it
to do directly in the form of a procedure” [Upstill 1989, p. 275].
We believe that such an approach could benefit NPR even more,
for it requires an even greater flexibility than photorealistic render-
ing. While we draw inspiration from such existing programmable
rendering systems, we observe that the application to line draw-
ings entails major differences. Most importantly, the use of lines as
atomic drawing elements, to which a number of procedures are ap-
plied, means that we operate on objects that have significant extent
in the image, as opposed to, for example, points for Renderman. Two
additional properties of line drawing also contribute to this nonlo-
cality of rendering. First, properties of the drawing at a certain scale,
such as its overall density, may affect individual lines and strokes.
Second, stroke primitives carry a visual meaning that extends well
beyond their actual shape, as they typically depict some region in
2D or 3D. Another difference with existing procedural shaders is
that, due in part to the nonlocality just mentioned, the drawing is
created by the accumulation of marks in the image and therefore is
produced in a sequential manner: the order of operations, and the
resulting sequence of strokes drawn, matter in the final result.

Halper et al. [2002, 2003] have introduced OpenNPAR [2002] a
C++ library built on top of OpenInventorTM and designed to facilitate
the development of NPAR real-time software by providing a suite of
built-in components commonly used in NPR systems (e.g., standard
silhouette extraction algorithms, geometric structures). The typical
user of OpenNPAR would be a software engineer interested in de-
signing and developing a complete NPR system. Although both our
approaches are programmable, they differ in many respects: while
their goal is to facilitate the development of applications, ours is to
facilitate the direct creation of images; while their target audience is
developers, ours is technical directors; an analogy with well-known
systems applies accurately to our respective approaches and is help-
ful in understanding better their singularities: their system can be
compared to OpenInventorTM, ours more resembles RendermanTM;

Fig. 3. Stroke topology. The 3D model used here can be seen in Figure 2.
(a): The planar graph for the considered viewpoint. (c) and (d): The same
path in the graph drawn with the same low-level attributes but with three
strokes and one stroke respectively.

the differences in intended goal, users, and philosophy between
these two systems are analog to those between OpenNPAR and our
approach.

Recently, Eisemann et al. [2008] presented an extension to our
programmable line drawing approach [Grabli et al. 2004a] focusing
on clip-art styles. They build on the operators proposed in our work
and the user can program new styles for both contours and regions.

2. STYLE ATTRIBUTES AND SCENE
PROPERTIES

2.1 Style Attributes

We distinguish two levels of style attributes: low-level and high-
level. Low-level attributes determine the appearance of a single
stroke. They are the most easily identifiable and are the most widely
used in other NPR systems. We consider four low-level attributes:

—Geometry. The stroke backbone geometry.
—Thickness. The stroke thickness at each of its vertices on both

sides of the backbone.
—Color. The stroke color at each vertex
—Texture. The stroke texture simulating the interaction of the tool

and the medium on the support.

High-level attributes carry more global properties such as the spatial
distribution of strokes or the path each stroke follows in the drawing.
Although they contribute significantly to the style of a drawing, these
attributes are less obvious than the low-level ones and were given less
attention in previous works. We identify three high-level attributes.

Stroke topology. It is the path followed by the artist’s tool while
drawing a single stroke without lifting the “pen”, as illustrated in
Figure 3. The choice made for this path will strongly influence the
drawing appearance [Willats 1997; Durand 2002]. Indeed, as shown
in Figure 3(c) and 3(d), although the same set of contours was de-
picted with the same low-level attributes, the two drawings are visu-
ally different just by virtue of choosing different stroke topologies.
It is important to observe that stroke topology is not tied to the
object’s 3D topology but rather relies on the 2D arrangement of
the feature lines in the image, and that resulting continuous strokes
may be composed of the projections of several disjoint 3D curves,
as illustrated in Figure 4.

Stroke topology was studied and used in other work, for example,
Isenberg and Brennecke [2006]. However, to our knowledge, it was
never a style attribute over which the user has explicit control.

Line omission. As mentioned in the Introduction, in contrast to
photography, drawings afford abstraction or omission of details, and
artists have developed a number of pictorial techniques to prevent
clutter while preserving shape and information. For example, they
omit structures that are too small, exploit repetition in the scene,

ACM Transactions on Graphics, Vol. 29, No. 2, Article 18, Publication date: March 2010.



Programmable Rendering of Line Drawing from 3D Scenes • 18:5

Fig. 4. Stroke paths rely on the 2D topology of the scene rather than on
its 3D topology. Strokes are connected paths in 2D but not necessarily in
3D. The 3D scene on which these strokes were computed can be seen in
Figure 8(a).

Fig. 5. Style layering consists in combining different visual appearances
within the same drawing. (a) This illustration in progress combines two
visual appearances for the strokes: first, some sketchy strokes to draw the
scene blueprint and second, more precise pen-and-ink strokes for the first
permanent lines. For these last lines, both styles were applied leading to two
sets of overlapping strokes. Image courtesy of Pellerin c© Dupuis. (b) This
Japanese illustration also combines two visual appearances: the lines of the
face were drawn with fine faint strokes whereas the cloth is represented using
very thick and strong strokes. In contrast to the previous example, the two
styles never overlap. “Daruma” by Daishin Gito.

and omit texture detail. They carefully control the local amount of
strokes, or density, in order to avoid clutter, focus attention, and
create dynamism.

We identify two pictorial strategies predominantly used by artists
to address clutter in line drawing of repetitive or near-regular struc-
tures: first, uniform pruning which ensures low complexity by omit-
ting lines homogeneously, as can be seen in Figure 1(c) on the rooves
and the pavement, and second, indication which suggests the overall
complexity of repetitive structures by drawing in full details only a
few small regions [Winkenbach and Salesin 1994], as can be seen in
Figure 7(d). They differ in their focus (emphasize versus exploit rep-
etition) and visual style (uniform versus spatially-varying drawing
complexity).

Style layering. Style layering refers to the use of different visual
aspects for different categories of strokes in the drawing, as illus-
trated in Figure 5. These categories can overlap, when some lines
are represented by several strokes of different styles (Figure 5(a)),
or they can can be distinct, in which case each line is represented in
a single style (Figure 5(b)).

Line nature
List of line families (silhouette, suggestive contour, crease, border)
to which a given line belongs.

Quantitative
invisibility

Number of surfaces occluding a given point (defined by Appel
[1967]). A point whose quantitative invisibility is 0 is visible.

Occluding
surfaces

List of surfaces (each surface being marked by an identifier) oc-
cluding a given point.

Occluded
surfaces

List of surfaces, at a given 3D point, occluded by the surface this
point belongs to.

Depth Distance from the viewpoint to a given 3D point.

Depth
discontinuity

Distance between a given 3D point and the next object behind it in
the view direction.

3D Normal
The 3D normals at a given surface point. There will be a single
normal if the surface is smooth at the given point, two otherwise.

3D Coordi-
nates

The X,Y,Z 3D coordinates of a given point.

Material Material color (e.g. diffuse, specular) of a surface at a given point.

3D line
length

The length of a feature line in world space.

Objects ID Unique identifier associated to each surface.

Line
adjacency

Connectivity information encoded in the planar graph built from
the feature line projections. It is defined at each 2D vertex of this
graph as the list of graph edges connected to it.

2D Curvature The 2D curvature computed at a given 2D line point.

2D Normal The 2D normal computed at a given 2D line point.
2D Coordi-
nates

The x,y 2D coordinates of a given point in the image plane.

2D arc-length The arc-length at a given 2D line point.

2D line
length

The length of a projected feature line in image space.

A priori
density

The a priori density is a measure of the visual complexity of the
potential drawing.

Image
aspect ratio

The aspect ratio of the final image.

Camera
Properties related to the camera (world space position, focal
length, etc...).

Bounding
Box

The bounding box of the scene in world space.

(a)

Causal
density

It is a measure of the visual complexity of the drawing. It is up-
dated as strokes are added to the drawing.

(b)

Fig. 6. (a) Properties of the scene. (b) Properties of the drawing.

2.2 Scene and Drawing Properties

We believe that style is driven by properties of the 3D scene and
the drawing. Visibility or line nature are examples of properties
belonging to the 3D scene, whereas drawing density is a property
obtained from the drawing itself. Figure 6(a) sums up the properties
that can be extracted from the 3D scene and that we believe useful
in the context of style description. Some of these properties were
already introduced and used in previous papers: depth, for instance,
is commonly used to control line thickness, where a line closer
to the eye is drawn thicker. While some properties are useful in
almost all styles, like the line adjacency property that generally
helps define stroke topology, some other properties only apply to
very specific styles. For example, quantitative invisibility or the list
of occluding surfaces is useful for technical illustrations but rarely
used for artistic ones. The a priori density is a property that describes
scene complexity: it is computed on the complete arrangement of
lines from the view, that is, on all lines that might be turned into
strokes. It corresponds to the a priori knowledge an artist has of the
scene he is drawing (refer to Section 2.3)

Similarly, Figure 6(b) shows useful properties found in the draw-
ing. It only contains the causal density, a measure of the density of
strokes in the drawing. In contrast to the a priori density, the causal
density is computed on the image where the strokes are rendered
and measures the spatial complexity of the current state of the draw-
ing as strokes are added, allowing for clutter control through line
omission or stylization (refer to Section 2.3).
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Fig. 7. (a) The style of this technical illustration consists in omitting lines to emphasize a subset of the assembly elements. Two properties are particularly
important in this context: First, the set of occluding surfaces, which is used to discard lines whose at least one occluder belongs to the subset of interest, second,
the set of occluded surfaces, which serves to omit lines that occlude the emphasized subset. Image from “Road & Track Illustrated Automative Dictionary,”
page 152, by John Dinkel, c© Bentley Publishers. (b) The guiding lines visible in this illustration often match quasi-rectilinear feature lines, thus 2D curvature is
implicitly used to decide where these guiding lines should start and stop. Image from “The Practice and Science of Drawing,” plate XVIII, by Harold Spencer.
(c) The lines present in this third illustration are those “turned” toward a point central to the scene: It is the 3D normal property that permits the artist to determine
which lines to keep. “Interior of the Palais de Justice” by Jean Pelerin. (d) In this illustration, the artist uses indication to simplify the drawing: complexity is
suggested through a few regions drawn in more details. This simplification strategy involves both the a priori density and the causal density. Image from “Les
maı̂tres de l’Orge,” courtesy of Van Hamme and Vallès, c© Editions Glénat.

Figure 7 shows a few illustrations where the influence of scene
and drawing properties on the drawing style is relatively obvious.

Most of these properties are either simple and straightforward
to obtain, or can be computed using standard techniques, such as
ray casting for visibility. However, we could not find satisfactory
definitions for line density measures in the literature and introduced
our own, the a priori density and the causal density, which, com-
bined, allow advanced automatic simplification strategies for line
drawings, as presented in Section 2.3.

Note that the addition of lighting quantity to this list does not
represent any theoretical complication. In fact, the user can already
implement shaders that capture lighting using the 3D normal value.

2.3 Density Measure

In this section we summarize two density measures, a priori and
causal, which we introduced in an earlier article. They estimate the
complexity of the view and the drawing [Grabli et al. 2004b].

2.3.1 A Priori Density. A priori density is measured on the view
made of all the visible feature lines. This view represents the poten-
tial drawing as it would be if all visible lines were drawn without
any style. The role of the a priori density is to give information about
the complexity of the view at any location, both in a quantitative and
a qualitative way. Indeed, due to the 1-dimensional nature of lines,
directions play a significant role in the resulting clutter and have
to be taken into account. Similarly, visual complexity is inherently
linked to scale; lines appear cluttered or not depending on the scale
at which they are considered.

Intuitively, we define density at a given point and at scale s as the
sum of the length of the lines included in a circle of radius s nor-
malized by the area of the circle. This normalization is important to
ensure scale independence. In practice, we use a spatially-weighted
average with a circular Gaussian kernel of variance σ . We also de-
couple information about different orientations and define density
for a given direction �u using a falloff wo on the direction of the line.

The density of a set of lines L at a point Q, for scale σ and
orientation �u is then

d(Q, σ, �u) =
∫

P∈L
wd (P, Q, σ )wo(P, �u) dl, (1)

where wd is the normalized circular Gaussian function of standard
deviation σ

wd (P, Q, σ ) = 1

2πσ 2
e− ‖−→P Q‖2

2σ2 (2)

and wo the orientation weighting function that depends on θ (P), the
angle between the line tangent at point P and �u

wo(P, �u) =
{ |cos( nθ (P)

2 )|, if θ (P) ∈ [− π

n , π

n ],
0 otherwise.

(3)

The notation P ∈ L in Eq. (1) is a shortcut to designate the inte-
gration space made of the set of points lying on the lines of L. n
controls the range of angles a given point of L contributes to.

A thorough analysis of this measure as well as implementation
details can be found in Grabli et al. [2004b].

The a priori density affords a systematic approach for character-
izing the structure of cluttered regions in terms of geometry, scale,
and directionality. However, this measure alone does not provide
fine control over stroke placement and we propose another measure
of density to do so.

2.3.2 Causal Density. This measure complements the a priori
density which cannot guarantee that the complexity of the actual
drawing does not exceed a given threshold, nor that any pair of
strokes is too close in the image. The causal density is updated
after each stroke is drawn and can be used to stylize or decide to
omit subsequent strokes. The causal density estimator works on the
arrangement of strokes and, at a point Q in image I 1, it can be

1In the case where the strokes are drawn over a white background, I (P) =
1 − Intensity(P).
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written as

d(Q, σ ) =
∫

P∈I
wd (P, Q, σ )I (P) dP, (4)

where wd is the Gaussian function defined by formula (2). It indi-
cates how “dark” the drawing is locally with respect to the given
scale defined by σ . Each added stroke “darkens” the image an
amount that depends on its color, size, thickness, and on the scale
σ .

In our approach, the causal density can be queried at multiple
scales but for performance reasons we have chosen not to encode it
at multiple orientations. In contrast to the line density estimator it
does not take directionality into account. Nonetheless, a direction-
ality dependency might be taken into account using the directional
information afforded by the a priori density measure.

3. DATA STRUCTURE AND ACCESS

To both facilitate access to properties of the scene and to make stroke
creation versatile, we define a data structure, the view map, which
combines geometry, topology, and the rest of the properties found
on feature lines. This data structure makes it easy to query scene
property values and manipulate feature lines in the style module.

3.1 Feature Line Generators and
Apparent Feature Lines

Feature lines form the true input to our system. They are both the
foundation of the drawing, since strokes are built from these lines,
and the link between the drawing and the scene, as scene prop-
erties are accessed through them. In our implementation we work
with some of the usual families of feature lines, namely silhouettes,
creases, and suggestive contours [DeCarlo et al. 2003]. However,
our approach is not restricted to a given set of lines and can eas-
ily be extended to include new types of lines. Recent studies [Cole
et al. 2009; 2008] have shown that different families of lines should
be combined to effectively depict a large variety of shapes and,
as future work, we would like to add apparent ridges [Judd et al.
2007], suggestive highlights [DeCarlo and Rusinkiewicz 2007], and
demarcating curves [Kolomenkin et al. 2008] to our set of feature
lines.

We define feature lines in a topological way that is both unam-
biguous and can encompass any curve lying on the surface of a 3D
object. To make the description easier we adopt some conventions
used in Cipolla and Giblin’s work [2000], and distinguish feature
line generators, noted �i , which live on the 3-dimensional surfaces
of the scene, from apparent feature lines, γi , which are their pro-
jections in the image plane. We define the set � of feature line
generators as the 3D curves formed by the feature points lying on
the surfaces such that each curve is, first, either closed or has ex-
tremities corresponding to an ending or a branching on the surface,
and, second, is regular.2 This can be more formally written as

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�i

∣∣∣∣∣∣∣∣∣

�i ⊆ P
�i open and connected
∀P ∈ �i , ∃ε/Bε(P) ∩ P is a 1-manifold
�i maximal wrt inclusion
�i regular

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where P is the set of feature points and Bε(P) an ε neighborhood
around P . An example set � is illustrated in Figure 8.

2A differentiable curve is said to be regular if its derivative never vanishes.

Fig. 8. (a) A 3D scene, (b) the set P of feature points for the considered
viewpoint, (c) the corresponding initial feature lines �i seen from another
viewpoint. (d) The view map for this scene.

This definition excludes the possibility of multiple line generators
at a given point on a surface. As an example, a point being both
silhouette and crease would belong to a single generator that is both
a silhouette and a crease at the same time.

The apparent feature lines γi are the projections of these curves
on the image plane. Because they live in the same space as the future
strokes, it is the apparent feature lines rather than the feature line
generators that we work with in a style module. For example, the
vertices of a stroke result from a regular sampling of an apparent
line, that is, a regular sampling in image space.

In the stylization process, we want our shaders to fully utilize the
properties described in Section 2.2; first, as a way to manipulate
lines, for instance selecting a set of lines based on their quantitative
invisibility; and second, to drive stylization attributes, for example,
varying the stroke thickness proportionally to the distance to the
viewpoint. So far, our definition of apparent lines does not consider
scene properties whose value can vary arbitrarily along a given γi or
even be locally undefined in case of discontinuity. This means that
querying scene property values from apparent lines in this form is
at best unreliable.

First, we need to ensure that there are no conflicting properties,
such as different values for quantitative invisibility, on the same
feature line. Second, all scene properties must be well defined at
any point along each line. For these two reasons, it is required to
further split feature lines to produce shorter lines along which scene
properties are continuous. This will guarantee consistency in sub-
sequent access to property values. We first consider where scene
properties are naturally located to understand if and when apparent
lines constitute a valid domain for their query.

3.2 Location of Scene Properties

Properties of the scene can be partitioned according to the five fol-
lowing geometric contexts.

Point on an apparent line. It is the first geometric context natu-
rally available to us when working with lines in image space. Some
of the properties located in that context include 2D image space
coordinates, 2D normal, 2D curvature, and image space arc length.

Apparent line. It is the image-space curve itself. Properties from
that context include the 2D length of the line in image space.

Point on a line generator. A lot of the properties we wish to con-
sider when working with apparent lines are defined in 3D, on line
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generators. Thus, another possible context is a point on a line gener-
ator. An important portion of the scene properties is located in that
context, for instance, world coordinates, depth, depth discontinuity,
quantitative invisibility, feature line family (silhouette, crease, etc.),
normal to the surface, and arc length in world space.

Line generator. As with apparent lines, the line generator itself
constitutes a possible location for properties such as line length in
world space.

Scene. Finally, some properties are not bound to the lines them-
selves and are located at a more global level in the scene. They can
then be queried in an a-contextual way. For example, information
of camera, bounding box of the scene, image resolution, and image
aspect ratio are located at the scene level. Note that these quantities
can always be unambiguously queried and do not participate in re-
fining the lines. For this reason we do not discuss it in the remainder
of this section.

Because we are working with curves, we can always assume the
context of a curve around a point.

3.3 Structure of Apparent Lines Based
on Scene Properties

We now focus on accessing value of scene properties belonging to
any geometric context from apparent feature lines.

For properties defined on apparent lines themselves or at their
points, continuity can be directly studied without ambiguity. For
properties at the line generator level, it can be shown that the con-
tinuity of their value along an apparent line is the same as along its
line generator except at a few identified points.

PROPERTY 1. Let I be a function giving the value of a property
defined on a line generator � and let γ be the apparent line corre-
sponding to �. If I is C1 at a given point r of � and if both � and
γ are 1-manifolds respectively around r and around the projection
p of r , I is also C1 at p except if p is a cusp, that is, if the tangent
to � at r is collinear to the view direction.3

The proof can be found in Appendix A. This property gives us a
recipe to build a set of apparent lines with continuous scene proper-
ties. First, split the feature line generators where world-space prop-
erties are discontinuous, at cusps and at points corresponding to
multiple points (self-intersections of the apparent line). And second,
split the resulting apparent lines where image-space properties are
discontinuous. We call λ the set of scene-property-based apparent
feature lines λi built this way.

λ is a structure of the set of feature points that is as compact as
possible with respect to scene properties. We show in Section 3.5
that it is also relevant to the general problem of accessing properties
of the scene in the context of line drawing.

Section 3.4 characterizes discontinuity points for all the properties
presented in Section 2.2 and shows a practical construction method
for λ.

3.3.1 Graph Structure. Artists often take advantage of the 2D
arrangement of lines in the image, in particular to draw strokes in-
dependently from underlying surface topology. We build a planar
graph (the view map) from the set λ of apparent feature lines defined
earlier to reflect this 2D arrangement. In practice, intersections of
these feature lines in the image lead to graph vertices. This graph,

3Note that even if � is a 1-manifold, it is not necessarily the case of its
projection γ which can, for instance, self-intersect. In this case, � has to be
split to ensure that γ is a 1-manifold.

illustrated in Figure 8(d), makes definition of stroke topology very
flexible as it allows any possible path. As all properties are continu-
ous along the lines of λ, they are also defined and continuous along
each view map edge. On the other hand, they are generally dis-
continuous at view map vertices (which include initial feature line
extremities). Vertices and edges of the view map will be referred to
as view vertices and view edges, respectively.

3.4 Practical Construction of the View Map

Using the tools defined Section 3.3, we propose an analysis of our
set of scene properties, and a practical construction for the view
map. It consists of the two following steps: First, build the set λ of
scene-property-based apparent feature lines and second, compute
the corresponding planar graph in the view. We show that the view
map construction is fairly straightforward since, with the exception
of cusps, discontinuity points for our scene properties are a subset of
the intersection vertices introduced when creating the planar graph.
Figure 9 lists all our scene properties, gives the context in which they
are naturally located, and characterizes their discontinuity points
(we omit the study of properties that are constant at the scene level).
These discontinuities may happen at Y-junctions (for line nature,
quantitative invisibility and 3D normal), T-vertices (for quantitative
invisibility, occluding surfaces, occluded surfaces, depth disconti-
nuity, and any property located on line generators when the T-vertex
corresponds to a self-intersection of the projected curve), and cusps
(quantitative invisibility, 2D curvature, 2D normal, and any property
located on line generators). These points are illustrated in Figure 10,
for the specific example of quantitative invisibility. For quantities
located on line generators, we systematically rely on Property 3.3
to translate continuity results from line generators to apparent lines.

We assume that the triangle meshes that compose the scene are
good C0 approximations of piecewise smooth surfaces on which
we can safely use discrete average-based estimators to compute
differential geometric quantities such as curvature. Because of the
difficulty of computing higher-order geometric discontinuities on a
triangle mesh, we choose to ignore discontinuities of order k > 1.
For instance, a discontinuity in curvature that does not correspond
to a discontinuity in normals is neglected. We also assume that the
scene is viewed under a general viewpoint, which means that a small
perturbation of that viewpoint does not affect the configuration of the
line drawing. With piecewise smooth surfaces, silhouette generators
and suggestive contour generator are smooth space curves.4 Finally
we assume that crease line generators are piecewise smooth as well.
Under these assumptions, apparent feature lines are also smooth
except at cusps [Cipolla and Giblin 2000].

As mentioned earlier, except for cusps, all discontinuity vertices
are either vertices of the initial set � of line generators or vertices
corresponding to intersections of apparent lines in the image plane.
Therefore, once the �i are available, computing the view map simply
involves adding cusp vertices to these generators and building the
planar graph of their apparent counterparts.

There is no fundamental difficulty in adding more families of
feature lines to the view map. The main task consists in identifying
how the scene properties behave at intersections with these new
lines. The fact that a family is view-dependent or view-independent
doest not require any additional consideration since our shaders do
not hadle temporal events.

4To be accurate we should mention that silhouette generators actually have
two types of singularities: beaks and lips [Cipolla and Giblin 2000]. However
both these singularities disappear under the general viewpoint assumption
and can therefore be ignored.
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Line nature
(generator)

Continuous along the apparent feature lines λi. In our case,
each line generator Γi has a single nature, except for silhou-
ette and crease that can coexist at a given point. A transition
to/from this dual nature only happens at Y-junctions involving
a crease and a silhouette [Nalwa 1988] (already a subset of the
vertices of Γ ).

Quantitative in-
visibility (gener-
ator)

Three types of discontinuities along a line: when it passes
behind a silhouette (T-junctions), when it intersects a silhou-
ette in 3D (Y-junctions), and when it passes through a cusp
[Markosian et al. 1997]. These events are illustrated in Fig-
ure 10.

Occluding surfaces
(generator)

Discontinuity along a line when it passes behind a contour
line, i.e. a silhouette corresponding to an object’s external con-
tour in the image plane.

Occluded surfaces
(generator)

Discontinuity along a line when it passes in front of a contour
line.

3D coordinates,
Depth (generator)

Continuous on line generators (continuous curves in world
space), continuous along apparent lines (from property 3.3).

Depth disconti-
nuity (generator)

Discontinuity along a line when it passes in front of a silhou-
ette line, with no surface lying between these two lines.

3D Normal
(generator)

Continuous. Discontinuities along a line generator iff it inter-
sects a crease line on the surface. These intersections belong to
the initial set of vertices of Γ so after property 3.3 this quan-
tity is continuous along the λi.

Objects identity
(generator)

By definition, constant on feature line generators. Indeed,
since the topology of a line of Γ follows that of its surface,
only one surface can be spanned by a single line generator.

Material
(generator)

Continuous, for the same reason as above, assuming each ob-
ject is assigned a single material.

3D line length
(generator)

By definition, constant on a line generator.

2D Curvature,
2D Normal
(apparent)

For smooth surfaces, discontinuities along the γi happen only
at cusps [Cipolla and Giblin 2000]. For surfaces with sharp
edges, discontinuities can also happen at points correspond-
ing to Y-junctions involving a crease line generator. Thus both
these quantities are continuous along the λi.

2D coordinates
(apparent)

Continuous (λi are curves in image space).

2D arc-length
(apparent)

By definition, continuous along apparent lines.

2D line length
(apparent)

By definition, constant on apparent lines.

A priori density
(apparent)

Considering that the a priori density is computed in image
plane as a convolution of a Gaussian function with a bound
function (the image intensity), it is continuous all along the
lines of λ.

Fig. 9. Discontinuities of scene properties. For each property, the natural
context is indicated in parentheses, “generator” or “apparent” for properties
located or varying along, respectively, feature line generators or apparent
feature lines.
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Fig. 10. The quantitative invisibility can change at T-junctions (points
A,B,C, and D in (a)), at Y-junctions, (points E,F in (a)) and at cusps (points
A,B,C, and D in (b)).

The view map proved useful in other illustrative applications. In
particular, Eisemann et al. [2009, 2008] leverage the view map to
generate 2D editable vector illustration from 3D scenes.

3.5 Access to Property Values

Since style attributes rely strongly on properties of the scene, it is
critical to be able to query them from different primitives (lines,
points) manipulated during the drawing process. In the general con-
text of NPR line drawing, the difficulties related to such a mechanism
result mainly from the three following facts.

—NPR eventually leads to purely 2D elements (e.g., the apparent
feature lines) from which some 3D quantities must be queried.

—Scene properties are a priori discontinuous along initial apparent
feature lines (the γi in our notation).

—The primitives that are rendered are traditionally 1-dimensional
and direct access to scene properties from these primitives is often
desirable (although most properties are defined at points).

In our case, the primitives that are handled by the user within
the drawing process can be 1-dimensional or 0-dimensional.
The 1-dimensional primitives are view edges or strokes and the
0-dimensional ones are view edge points or stroke points. We must
provide functions to access scene properties from any of these
primitives.

3.5.1 0-Dimensional Queries. As seen in the previous section,
the view map structure successfully isolates points where scene
properties are discontinuous (view vertices), and ensures their conti-
nuity over view edges. 0-dimensional queries can therefore be made
safely at any view edge point. However, as we will see in Section 4,
strokes are built as a path in the view map and can potentially span
several connected view edges. As a result, strokes may also include
points that correspond to view vertices and we need to consider that
queries can be made at these points.

In the general case, a view vertex connected to n view edges can
be associated to n different values of the vector of scene properties.
However, since in our approach points always belong to lines, we
know that every query at a point is performed in the context of a
1D primitive. In practice, the points handled in the drawing process
always come from an iteration loop over the vertices of a stroke or
view edge. This 1D context reduces the number of possible values
from n to 2, making it easier for the user to make a proper decision,
either choosing one of the two values or combining both.

In our implementation, such contextual queries to properties are
made through iterators on points. These iterators embed the 1D
context as they allow the traversal of the view edge or stroke the
point belongs to. As a result, at any view vertex, the two possible
values for a given property are available to the user. Iterators also
make it possible to compute on-the-fly differential-type values.

3.5.2 1-Dimensional Queries. As explained earlier,
1-dimensional primitives are central to the approach and
need to afford a direct access to scene properties. For properties
natively located at the line level (e.g., line length) or properties that
take discrete values (e.g., quantitative invisibility), 1-dimensional
queries are natural. However, for properties located at points, we
want to compute a single value for the whole 1D primitive. This
can be done by aggregating several values obtained at points along
the line. We provide basic aggregation operators, such as mean,
min/max, variance, union, etc., as built-in operations and the user
can also easily define his own aggregation operators.

As long as the manipulated 1D primitives are view edges, this
process generally leads to consistent results, since properties are
continuous along each of them. By contrast, in the case of strokes,
the query of a single property value for the whole primitive might
make no sense. For instance, when dealing with discrete properties
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such as quantitative invisibility, what result should we expect for a
stroke sharing different values? And which aggregation operator can
be used? There is no general answer to such questions as they depend
both on the involved property and on the target application. Indeed,
due to the extreme variety in scene properties, although several
standard aggregation mechanisms can be provided, they must be
used with care. For instance, choosing the max operator to compute
quantitative invisibility on either a stroke or a view edge makes sense
(it returns the highest number of surfaces occluding a part of the
1D line), but using it for the nature property leads to a meaningless
answer. In addition, using the mean operator to compute quantitative
invisibility on a line can be correct if it is continuous all along it
(case of a view edge, for instance), or incorrect, as explained before,
in the opposite case.

Note that even in the case of view edges, the use of statistics, such
as the average, for 1D queries can lead to unexpected results. Indeed,
the return value is computed from the set of values obtained through
0D queries at points along the apparent feature line. The location for
these points is defined by the regular image-space parameterization
of this apparent line. But for world-space properties, we would gen-
erally rather choose query points according to a regular world-space
parameterization of the feature line generator. As future work, we
would like to allow for multiple-space parameterizations per line,
including image-space and world-space regular parameterizations.

In essence, it is necessary to provide aggregation operators for
access to properties from 1-dimensional primitives since they are
often needed and are well defined most of the time; as a result they
can greatly help reducing the user’s coding task. However, it is the
user’s responsibility to properly recognize the relevance of such a
query.

4. PROGRAMMABLE STYLE

In this section, we present the heart of our approach: the “shading
language” provided to the user for style description. In practice,
we build on top of the Python scripting language and add a set
of specialized operators (select, chain, split, shade, sort, draw) that
work on the view map. Together these operators allow the user to
model the whole drawing process.

We define a style sheet as a set of layers, the style modules, which
each describes part of the style. This is a natural way to break up
complex styles made of several different visual appearances into
simpler styles, each focusing on a single visual appearance, as il-
lustrated in Figure 11.

We first show a simple example made of three style modules
to illustrate the operators idea. Then, each operator is thoroughly
described and motivated. Finally, we discuss issues related to the
style module pipeline organization and synchronization.

4.1 Simple Style Module Example

Consider as an example the style sheet illustrated in Figure 12. It
uses three style modules.

(1) The first module selects edges on the external contour of the
drawing, chains all edges on the external contour, and assigns
a calligraphic (direction-dependent) thickness.

(2) The second module selects all visible edges, chains edges along
silhouettes, splits chains of edges at points of high curvature,
alters the stroke geometry making them tangent to their center,
and assigns a sketchy texture and standard thickness.

(3) The third module selects all visible edges that are not external
contours, chains along silhouettes and crease lines, and assigns
plain attributes to the strokes.

Fig. 11. Style module organization: The complex style shown on the right
is the result of superimposing three simpler style modules.

Figure 13 shows the code for one of the style modules. In par-
ticular, it shows that a style module is made of a main body and
of a set of style rules. As we see in the next section, style rules
encapsulate the behavioral part of each operator and are a way to
both minimize the user’s coding task and to reuse existing elements.
Each style module creates a layer of the final image as seen on the
right of Figure 12. The bottom of Figure 13 shows the drawings
obtained with this style sheet on different models. Notice the style
consistency accross these illustrations.

4.2 Operators

We define a set of operators that follows from the list of style at-
tributes established earlier. It is important that these operators strike
the right balance in granularity: they must be high-level enough to
easily describe a style and low-level enough not to compromise
flexibility. They should also be modular to reduce the user’s coding
task as much as possible though reusability of existing components.
We take inspiration from STL algorithms which successfully im-
plement similar design goals. Each of our operators is a fixed al-
gorithm/procedure parameterized by a programmable component,
which we call a style rule, that encodes the actual behavioral part of
the operator, in the same way that STL algorithms are fixed proce-
dure parameterized by functors.5 In our implementation, style rules
are usually C++ functors derived from built-in base classes. One
key difference with STL algorithms is that the set of primitives is
never explicitly handled (see Section 4.3) in the style module and
is therefore not part of the operators’ arguments. Depending on the
operator, there might be one or several style rules of different na-
tures to embody its behavior. There are three types of style rules:
predicates6 (unary or binary, the latter for comparisons, working on
either 0D or 1D primitives), functions (in particular to query scene
properties, at 0D or 1D primitives), and iterators over view edges to
traverse the view map.

Figure 14 shows the formal declarations of all operators (their
C++ signature) and describe their input, output, and arguments.

5A functor is a function object.
6A predicate is a function that evaluates a condition and returns a boolean
value.
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Fig. 12. Three simple style module pipelines.

from Freestyle import *

from logical_operators import *

from vector import *

from calligraphic_shader import *

upred = ExternalContourUP1D()

# select external contour view edges

Operators.select( upred )

# Chain using a chaining iterator 

# parameterized by our predicate

Operators.bidirectionalChain(

        ChainPredicateIterator( upred, TrueBP1D() ), 

        NotUP1D( upred ) )

# create = select + shade + draw

shaders_list =  [

        ConstantColorShader(0,0,0,1),

        pyCalligraphicShader(1, 10, Vec2(1,1))

  ] 

Operators.create(TrueUP1D(), shaders_list)

from Freestyle import *

from vector import *

class pyCalligraphicShader(StrokeShader): 

        def __init__ (self,

                iMinThickness,

                iMaxThickness,

                iOri):

                StrokeShader.__init__(self )

                self._tMin = iMinThickness

                self._tMax = iMaxThickness

                self._ori  = iOri/iOri.length()

 

        def shade(self, stroke):

                func = VertexOrientation2DF0D()

                it = stroke.strokeVerticesBegin()

                while it.isEnd() == 0:

                        v = it.getObject()

                        tan = func(v)

                        ori = Vec2(-tan.y(), tan.x())

                        scal = min(1, max(0, ori * self._ori))

                        t = max(0,self._tMin + 

                                scal * (self._tMax-self._tMin))

                        v.attribute().setThickness(t/2.0, t/2.0)

                        it.increment()

Fig. 13. Code for the first style module from Figure 12. On the left is
the main body and on the right is the code of the calligraphic shader. The
other style rules used in this style module (e.g., ExternalContourUP1D,
ChainPredicateIterator) are built-in. The create operator on the last line is
specific to our implementation and is explained in Section 4.3. The bottom
drawings illustrate how the same style sheet can be applied to any 3D model.

We now describe each operator and how it relates to style
attributes.

Selection operator. The selection operator selects a subset of an
input set of 1D primitives (see Figure 14(a)). With the selection op-
erator the user can implement the high-level style attributes of line
omission and style layering. Indeed, it can be used to, for instance,

select the subset of view edges that correspond to silhouettes or
external contours. It can also be used on strokes to discard the ones
that lie in regions that are already too dense. In practice, a selection
operator extracts a subset of the active set of 1D primitives to
define the new active set. Built-in predicates are provided that
permit testing the properties of the scene described in Section
2.2. For example, selection can be based on quantitative invisibil-
ity, on the object ID, or on edge nature (crease, silhouette, or border).

Stroke topology operators. The view of a scene as encoded in
the view map provides graph information. However, line drawings
consist of 1D paths. Stroke topology operators allow the user to
define such 1D paths from the view map graph. We note that there
can be multiple strokes to represent the same feature line, and that
strokes can span multiple feature lines. We have identified two kinds
of decisions to control stroke topology. First, we must decide for
each vertex of the graph which path to follow. Second, we must
decide where to start and where to stop strokes. In our approach, the
former is handled by chaining operators, and the latter by splitting
operators. Figure 15 illustrates this process.

The formal declaration of the chaining operator as well as a
description of its input, output, and arguments can be found in
Figure 14(b). A chaining operator is invoked successively on all
view edges in the selection, and builds a stroke (i.e., a connected list
of view edges at this stage) originating from each, by traversing the
view map, optionally tagging each view edge as it is processed. It
is controlled through style rules specifying where to turn at a view
vertex, and when to stop.

Multiple chaining of the same view edge can be desired to pro-
duce overlapping strokes that convincingly simulate sketchy looks
as illustrated in Figure 16(c). The tagging mechanism mentioned
previously is provided for that purpose, and controls or prevents
multiple chaining. In addition, chaining can be either bidirectional
or unidirectional, the former meaning that a chain extends in both di-
rections from the first view edge. In addition, chaining can either be
constrained to remain inside the selection, or unconstrained. In the
latter case, each chain starts on a view edge from the selection but can
contain arbitrary view edges. Figure 16 illustrates various chaining
strategies for an initial selection of external silhouette edges only.

Our system provides several built-in chaining strategies, such as
chaining view edges of the same nature while respecting surface
topology, following contours or external contours, or chaining the
same view edges multiple times (sketchy look).
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void select(UnaryPredicate1D& pred);

Input A set of 1D primitives (view edges or strokes).

Output A subset of the input.

Style
rules

pred: A unary predicate that evaluates a condition on a 1D primitive. If that
condition is true, the primitive is kept otherwise it is discarded.

(a)

void chain(ChainingIterator& it, UnaryPredicate1D& pred);

Input A set of view edges.

Output
A set of strokes. After the chaining operator, strokes are chains of view
edges. Each input view edge initiates the creation of a stroke.

Style
rules

it: An iterator over view edges whose increment method encodes the al-
gorithm to choose the next view edge among those adjacent to the current
one. pred: A unary predicate working on 1D primitives that decides when
to stop the chain. Examples of stopping conditions include reaching a cer-
tain length, running into an occlusion or turning with too high curvature.

(b)

void sequentialSplit (UnaryPredicate0D& startingPred,
UnaryPredicate0D& stoppingPred,
float sampling);

Input A set of strokes.

Output A new set of strokes.

Style
rules

startingPred: A unary predicate working on points evaluating the starting
condition. If true, a new stroke is started at the point at which the predicate
is evaluated. stoppingPred: A unary predicate working on points evalu-
ating the stopping condition. If true, the last new stroke that was started
finishes at the point on which the predicate is evaluated. sampling: Since
we may want to split the stroke in places other than vertices from the in-
put model, our system operates on a sampled version of the curve with a
user-controlled sampling rate. Temporary vertices at this sampling rate are
iteratively created as the chain is traversed, but they are not stored perma-
nently.

(c)

void recursiveSplit (UnaryFunction0D<double>& func,
UnaryPredicate0D& pred0d,
UnaryPredicate1D& pred,
float sampling);

Input A set of strokes.

Output A new set of strokes.

Style
rules

func: A real function evaluated on points. The point realizing the func-
tion’s minimum identifies the splitting location. pred0d: A unary predicate
working on points that filters splitting candidates. This rule can be used to
prevent splitting at certain points, for instance those too close to the stroke
extremities. pred: The recursion unary predicate working on strokes that
decides whether to continue the recursion or not. sampling: Same as the
sequential splitting operator.

(d)
void shade(Stroke& stroke);

(e)

void sort(BinaryPredicate1D& pred);

Input A set of 1D primitives (view edges or strokes).

Output The ordered set of 1D primitives.

Style
rules

pred: A comparison binary predicate working on any pair of 1D primitives
and based on properties of the scene such as length, depth, etc.

(f)

Fig. 14. Operators.

Chaining Splitting

Fig. 15. The topology of the strokes is controlled through a chaining oper-
ator and a splitting operator. The stroke shown on the extreme right is built
by first chaining three full view edges and then splitting the chain to obtain
the desired extremities.

Once a first topology is defined for the strokes, refinement is
afforded through the splitting operator. We identify two different
ways of splitting a stroke: a sequential one and a recursive one.

Fig. 16. Examples of simple chaining predicates, applied to the set of
ViewEdges on the external contour of the drawing: (a) follows external
contour (b) follows silhouettes on same object (c) follows silhouettes on
same object and allows multiple chaining of the same ViewEdges. Note in
(b) and (c) how the chaining operation includes edges that did not belong to
the original selection.

The declaration for the sequential splitting operator can be seen
in Figure 14(c). In its basic version, sequential splitting iterates over
the stroke vertices and evaluates a condition to decide where to split.
A new stroke is created at each splitting point. For more flexibility
the strategy is refined by decoupling the splitting conditions for the
beginning and end of the stroke, and by evaluating each in a separate
pass. This process can lead to strokes constituting a partition of the
initial stroke (when the beginning and ending conditions are the
same), a set of overlapping strokes, or a set of isolated strokes.
This operator produces sketchy looks if a configuration leading to
overlapping strokes is chosen.

The recursive split (see Figure 14(d)) has a more global behavior.
It evaluates a function for each point of a stroke and splits at its
minimum point. The operator is then applied recursively to the two
resulting substrokes until a recursion condition is no longer true.
This is the appropriate approach to split a stroke at the points of
highest curvature, as seen in Figure 12.

Shading operator. Once the stroke topology is specified, the last
task consists in assigning low-level visual attributes such as color or
thickness. Because this step is the most similar to traditional shad-
ing systems we name the operator responsible for setting these at-
tributes the shading operator. However, in contrast to classic shaders,
we operate on 1-dimensional strokes rather than on 0-dimensional
fragments.

The shading operator traverses a stroke and assigns or modifies
its attributes. As opposed to previous operators which were im-
plemented as fixed procedures parameterized by user-defined style
rules, the shading operator is completely implemented by the user.
Indeed, given the algorithmic variety of the shading operation, it
seems difficult to provide it as a parameterized fixed procedure with-
out compromising its functionality. For this reason, Figure 14(e)
only contains a formal declaration for the shading operator, but no
input, output, or argument description.

We remark that strokes rarely exactly follow the underlying geom-
etry (except for technical illustration). Therefore, we also consider
the spatial position of the points along the stroke as a style attribute
and the shading operator can modify the geometry of the stroke
backbone, in the spirit of displacement mapping techniques [Ebert
et al. 1994].

Strokes can be resampled in image space to account for the various
sampling rate requirements of specific styles. The attributes that
were previously assigned are interpolated at the new locations. A
number of atomic operations on strokes (such as removing a vertex,
resampling using a given number of desired points) are available
and can be used in the context of geometry modification.
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Fig. 17. It is essential to order the lines prior to using causal density. (a) is a
rendering with all visible lines. (b) uses causal density to omit lines that were
sorted using depth discontinuity, and (c) omits lines that were not ordered.

Several shading operators can be applied sequentially to a stroke
to facilitate the control of different attributes within the same style
module. In addition, attributes can be assigned to a stroke in an
absolute manner (where previous values are replaced) or in a relative
manner (where previous values are modified).

Simple shading operators are provided, such as the assignment of
constant attributes or the mapping of a given texture. Furthermore,
several useful standard techniques that have long been used in
NPR for sketchy effects, such as noise, stroke displacement, or
smoothing [Markosian et al. 1997; Kalnins et al. 2002; Sousa and
Prusinkiewicz 2003] are built-in components of our system.

Drawing operator. Finally, as we discuss further in the next
section, it is important that the user can directly trigger the actual
drawing of a stroke. A drawing operator is provided for that
purpose. It is directly connected to the rendering engine and does
not include any programmable part. Its input is the final set of
strokes and its output can be a bitmap or vector image, a text file,
etc., depending on the renderer.

Ordering operator. In our approach, some operators work in a
greedy way and the sequence in which view edges or strokes are
treated can influence the drawing. In the chaining operator for in-
stance, a time-stamp mechanism prevents the reuse of a view edge.
More importantly, when using the selection operator combined with
the causal density for line omission, density evolves as strokes are
added and it is therefore essential to treat strokes that are most im-
portant first, so that they are less likely to be removed. The sorting
operator orders a set of 1D primitives according to a user-specified
binary predicate (see Figure 14(f)) . The definition of a relevant or-
dering of view edges or strokes can be very tedious and requires
the evaluation and integration of many kinds of properties that are
best specified using a programmable approach. Figure 17 shows two
simplified versions of a sunflower obtained using causal density. In
the first (b), the ordering gives the highest priority to strokes with
high depth discontinuities. In the second (c), strokes are drawn in
an arbitrary order. Notice how in the first version the limit of the
flower’s center appears more pronounced and the shape of the seeds
is better suggested.

4.3 Style Module Pipeline

Each style module encodes the drawing process as a sequence of
calls to the operators. At any given stage of the pipeline, only one
set of lines is available: Initially, it is all the view edges. After a
selection operator, it is the set of selected view edges, etc. This
set, referred to as “active”, is never explicitly manipulated by the
user since it naturally follows from the sequence of calls to the

operators. Note that this active set is either made of view edges or
strokes depending on whether it is considered before or after a call
to the chaining operator.

The sequence of calls to the operators is partially fixed by the
methodology following from the properties of the operators, which
are as follows.

Input and output. Each operator’s input and output determine the
set of operators it can follow or precede. For instance, the splitting
operator necessarily comes after a chaining operator since it works
only on strokes.

Uniqueness. This property indicates if an operator can appear
more than once or not in the pipeline. Chaining and drawing are the
only operators that cannot appear more than once.

Optionality. Whereas some operators must appear in the style
module for the drawing process to be valid, others are optional
and can be omitted. Only chaining and drawing operators are not
optional.

In addition, the sequence is also determined by the choice of
the synchronization mechanism made for each operator, that is, the
regulation of stream of data through an operator. We identify two
synchronization strategies to regulate the sequential flow of a set of
lines (view edges then strokes) through the pipeline of operators.

Data-based synchronization. In this scheme, each input view
edge triggers a run of the full pipeline before the next one is
processed, as illustrated with four operators and n lines in the
following table7:

Operator-based synchronization. In this scheme, all primitives
are processed by an operator before being passed to the next
operator.

Choosing one or the other synchronization mode has repercus-
sions on the information available during the process. Operator-
based synchronization provides all the information of processing
the complete sequence of lines through the previous operators to
the current one. For example, it is useful to know within a chaining
operator whether a given view edge was previously selected or not.
Operators like the ordering operators have to consider the full set
of lines at once and must be synchronized this way. However, with
the operator-based synchronization, information resulting from a
complete traversal of the pipeline by previous lines is obviously not
available. In particular, since the last operation always consists in
rendering the strokes, no information related to the current drawing
can be used. The data-based synchronization is useful to address
this precise need.

7Note that the illustration is slightly abusive since it is rarely the same element
that goes from one end of the pipeline to the other; generally, we start with a
view edge and end up with a stroke that potentially spans other view edges.
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Consider, for instance, a pipeline for line omission using causal
density made of a selection operator followed by the drawing opera-
tor. The operators must be synchronized according to the data-based
strategy. Indeed, since the selection operator needs the information
of stroke density, which is updated each time a stroke is added to the
drawing, it is essential that each stroke is drawn (i.e., traverses the
pipeline) before the next one is processed by the selection operator.
More generally, as soon as information from the drawing is needed,
the synchronization scheme must be chosen.

In practice, we want some operators to be synchronized one way
and some others to be synchronized the other way. The two modes
therefore coexist in the style module pipeline that consists of several
subpipelines, each working with its own synchronization mode. It
is mainly the need for information from the drawing that determines
how an operator is synchronized. Note that an operator that is called
several times in a style module can have different synchronization
strategies in the different subpipelines. The style module pipeline 	
we chose is made of two subpipelines 	op and 	dat , which respec-
tively use the operator-based synchronization and the data-based
synchronization.

	op =
(

[sort][select]∗
)∗

chain ([sort][select]∗
)∗

\
[split]∗

(
[sort][select]∗

)∗

	dat = [select]∗[shade]∗draw

We implemented the entire 	dat subpipeline as a single extra
operator create. This hides the details of synchronization from the
user. The set of style rules that drives the create operator is the union
of all the style rules appearing in the 	dat subpipeline. The create
operator is controlled via the combination of the style rules that
control the embedded operators.

5. MARK BACK END

The mark system is orthogonal to our programmable line drawing
approach. Our mark rendering engine uses OpenGL for its inter-
active view and Postscript for high-quality resolution-independent
output.8 Such an output is especially desirable for technical illustra-
tions and also allows further editing in vectorial packages such as
IllustratorTM. Strokes are rendered as triangle strips, defined by the
geometry of the backbone and the thickness values at its vertices,
as shown in Figure 18(a). Standard techniques are used to prevent
singularities of the offset curve at high curvature [Strothotte and
Schlechtweg 2002, Chapter 3].

We use actual stroke textures as alpha maps to increase visual
quality. The use of transparency alone allows us to control the color
of each stroke, as specified by its attributes. We use OpenGL blend-
ing modes to emulate various physical medium types. In practice,
we render the inverse of the image, so that a blank canvas cor-
responds to (0, 0, 0). This facilitates the use of blending and the
simulation of the subtractive nature of most media. We use a simple
replace mode for thick media such as oil paint. Additive blending
(which becomes subtractive in our inverse context) is well-suited
for wet materials such as ink. Finally, the minimum blending mode
provided by OpenGL 1.2 [Woo et al. 1999] can imitate graphite
and other dry media. Figures 18(b) to 18(d) illustrate these various
blending modes.

8Note that the Postscript specification doesn’t support texture mapping,
which prevents realistic media simulation as afforded by OpenGL.

Fig. 18. Strokes are rendered as triangle strips using OpenGL, as shown in
(a) where the stroke’s backbone is drawn in black. Using different OpenGL
blending modes, we simulate thick media (b), wet media (c), and dry media
(d). (e) Lines of code required to model various styles.

A background canvas texture can also be applied. However, it is
rendered only for the final drawing and does not affect the density
computation.

6. IMPLEMENTATION AND RESULTS

We implemented our core system in C++ and chose the Python
interpreted language as our style description language. A Python
library including operators, built-in style rules, and functions to ac-
cess properties of the scene is provided to the user for style descrip-
tion. The implementation of this library as well as the application
itself are written in C++. We chose two languages instead of one
so as to differentiate more the style modules from the system. In
addition, these languages are both object-oriented and show nice
compatibility features that offer essential interaction capabilities.
In particular, objects and functions defined in C++ can be used in
Python, and C++ classes can be specialized in Python and run back
in C++. Thanks to this last feature, style rules can be user-defined
in Python and passed as arguments to our C++ operators. We used
Swig [Beazley 1996] to generate the binding between the C++ core
system and Python style descriptions.

The silhouette lines are computed according to Hertzmann and
Zorin’s technique [2000] which leads to smooth 3D lines that better
fit stylization parameterization requirements than polygonal approx-
imations. Although the evaluation of the visibility for these lines is
problematic and we could not find in the literature a perfectly ro-
bust approach for their computation, we obtain satisfactory quality
by leveraging information given by the view map. First, we com-
pute the visibility at a set of sample points along a given view edge
using ray-casting combined with a subdivision approach inspired
by Hertzmann and Zorin [2000]. Then, since we know that each
view edge has constant visibility, we proceed to a vote among these
samples to determine the view edge visibility.

It takes between a few seconds and a few minutes to compute the
view map for a model of approximately 50K polygons using ray
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Fig. 19. Left: Python code for a user-defined anisotropic smoothing op-
erator. Right: The shader is applied on the external contour of a gear. Top:
without smoothing. Bottom: with smoothing.

casting for visibility computations. Stroke creation takes a similar
amount of time, depending on the number of strokes and on the style
module complexity. The use of density induces a significant drop in
performance because of frame buffer read-back cost.

A more interesting measure of our system’s performance is the
time needed to develop a style module. As an example, we spent
a total of three hours producing the images in Figure 23 (this in-
cludes style module coding, experimentation, and aesthetic evalu-
ation). The style modules contain about 500 lines of code, half of
which are straightforward use of built-in mechanisms. The system
includes many standard functions, predicates, shaders, and chaining
iterators that facilitate the elaboration of new styles. The develop-
ment of any new base object can benefit from standard sampling,
noising, smoothing, and 1D integration components. Similarly, all
scene properties are accessed through standard contextual query
mechanisms. In Figure 18(e) we show a range of styles and indicate
for each the approximate number of lines of code that were written.

6.1 Code Example and Results

Figure 19 shows the actual code of a shading operator that performs
feature-preserving smoothing using anisotropic diffusion inspired
by mesh smoothing techniques [Desbrun et al. 1999, 2000]. It uses
curvature flow and moves vertices in the direction normal to the
stroke at a rate proportional to local curvature. An edge-stopping
function prevents smoothing at sharp curvature points. The parame-
ters of the shader are declared in the constructor init. Normals and
curvature are part of the available scene properties, as described in
Section 2.2. We use an iterator to traverse the vertices of the strokes.
Stroke geometry is modified using the method setPoint(). More
code examples, including the code used to generate all the illustra-
tions in this article, can be found on the freestyle Web site.

In the remainder of this section, we show images that were pro-
duced with our system to illustrate its flexibility as well as the great
variety of styles that can be described. Although the effects shown
in these images are often new and can only be produced through the
precise control offered by our programmable system, our contribu-
tion is not in these effects but in the unified and flexible approach to
stylized line drawing rendering. The 3D models used to generate
the illustrations are shown in Figure 20.

Figure 21 illustrates a very common style in cartoon animation
where the color of the strokes is a variation of the surface material
color. We can easily implement this style as a shader. For example,
the color of the material is translated in the LUV space [Wyszecki

Fig. 20. Most of the 3D models used for examples in this section.

Fig. 21. Stroke color is automatically computed from material color.

and Stiles 1982] in the negative L direction if its actual L value is
higher than a user-defined threshold (to get a darker color), and in
the opposite direction otherwise (to get a brighter color).

Technical illustration is one of the main applications of our ap-
proach. Figure 22 demonstrates how a subpart of an assembly can
be emphasized. A first style module draws all the lines that do not
belong to the subset of interest in an imprecise way using light-tone
strokes. Four other style modules draw the lines of that subset with
different attributes depending on their visibility and which surfaces
are occuding them (surfaces from the subset itself or not). In addi-
tion, standard technical illustration conventions are evoked through
the use of different colors for creases and silhouettes. The result-
ing style clearly emphasizes the subset of interest while keeping its
surrounding environment.

Figure 23 shows a complex style made of eight styles modules
applied to a Virgin statue model. Three of these modules alter the
geometry of the strokes to generate a blueprint and sketchy lines,
two modules select and draw small strokes in high density areas and
the remaining modules display longer strokes in a lighter tone, also
using density value and a fade along the Y axis.

Figure 24 uses similar attributes as the previous example.
Figure 25 imitates the Japanese line drawing style using two style

modules simulating different brushes. Both use line shortening and
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Fig. 22. In this technical illustration, the occlusion property is used to
emphasize a subset of elements.

Fig. 23. This Virgin model was rendered with a “Renaissance-like” style
using a combination of several style modules. The illustrations show the
progressive addition of the three groups of style modules.

string tapering. The large brush layer also uses density evaluation
to avoid clutter.

Figure 26 illustrates how 3D properties can be used to drive ad-
vanced chaining. A chaining iterator that depends on depth value
forms strokes that delimitate clusters of objects lying at different
depth.

Figure 27 illustrates the use of a complex chaining operation
as well as causal density to build a simplified representation of a
dense structure with occlusion. For the grid, a chain is created for
each bar by connecting all view edges including short occluded
ones. These chains are sorted by length and subjected to the causal
density operator with a variable Gaussian kernel size depending on
depth. This allows us to keep only a single stroke for each bar and to
remove exactly half of the bars. The compressor behind the grid also
uses an advanced chaining iterator to avoid the dashed line effect
shown in Figure 28(b).

Fig. 24. Renaissance-like technical illustration.

Fig. 25. Japanese line drawing style.

Fig. 26. Left: Chaining based on depth value that draws strokes around
object groups in the foreground, middle, and background. Right (top): The
3D scene from the same viewpoint. Right (bottom): The scene from a top
viewpoint emphasizing the distances between objects.

Figure 29 illustrates three different style modules for line draw-
ing simplification using density. For all style modules, visible view
edges are first selected and chained together to form an initial set
of visible strokes. For the pipeline on the left, these strokes are di-
rectly processed through a selection operator that discards strokes
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Fig. 27. Density-based simplification combined with advanced chaining. (a) The initial set of lines. (b) The grid was uniformly simplified to enhance the
drawing clarity. Without any treatment, this results in a dashed-line effect for the compressor lines whose visibility is not up-to-date anymore (see close-up in
Figure 28). (c) An advanced chaining operator chains through small occlusions to fill holes due to grid line omission.

Fig. 28. Close-up on the small wheel of the compressor from Figure 27,
drawn with all lines (a), after simplification of the grid (notice the dashed
line effect) (b) and after chaining (c).

for which the causal density is too high. Note that without proper
sorting, the result looks rather unstructured. By sorting the strokes
according to depth, the result is visibly improved, as shown in the
middle pipeline of Figure 29. This style module performs uniform
pruning simplification and its pseudocode is shown in Figures 30(a)
and 30(b).

A slight modification of this pipeline allows one to transform the
simplification strategy from uniform pruning to indication. This is
done by changing the threshold used in the final selection to vary
proportionally to the gradient computed on the a priori density. This
results in lines lying near the boundaries of dense regions to be
drawn first. This style module is shown on the right of Figure 29
and its pseudocode is shown in Figures 30(a) and 30(c).

7. CONCLUSIONS

7.1 Summary of Contributions

We described a new formulation of the image creation process for
generating line drawings from 3D models. Our approach is based
on programmable operators that can be arranged to create style
modules. Through the development of this approach we made the
following contributions:

—a better control over essential style attributes, especially high-
level attributes such as line omission or stroke topology;

—the identification of scene properties useful for style description;

Fig. 29. Three pipeline examples performing line drawing simplification
using density. The pipeline on the left implements uniform pruning without
any sorting. The middle pipeline is similar but additionally sorts the strokes
based on their depth, which clearly improves the result. The pipeline on the
right corresponds to the indication strategy and is a slight variation of the
previous one: the threshold T for omitting strokes is not constant anymore
but varies proportionally to the gradient g computed on the a priori density.
As a result, strokes are kept near the boundaries of dense regions.

—the specification of a structure (the view map) of the feature lines
appropriate for describing style based on scene properties, both
in terms of line manipulation and access to scene property values;

—a decomposition of the drawing process as a pipeline of pro-
grammable operators;
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select(Visible)
chain(Visible)
sort(Z)      
shade(plain)
select(LowCausalDensity)
draw()

def LowCausalDensity(1DElement e) 
  t = APrioriDensityGradient(e) 
  if CausalDensity(e) < a*t+b 
    return true 
  return false 

def LowCausalDensity(1DElement e) 
  if CausalDensity(e) < threshold 
    return true 
  return false 

(b) 

(c) (a) 

Fig. 30. Pseudocode for the line omission style module implementing either
the uniform pruning strategy or the indication strategy. (a) The style module
body common to both strategies. (b) The style rule for uniform pruning, and
(c) for indication. In these examples, built-in components and user-defined
ones are written in blue and red respectively.

—the use of density measures to control automatic line drawing
simplification strategies.

7.2 Limitations

View map topology constraint. Although the strokes do not nec-
essarily follow the topology of the 3D scene, the 3D feature lines
do. In that respect, the view map defines the drawing process as a
3D to 2D projection rather than as a 2D depiction of the 3D world.
In particular this means that the topology of the view cannot be
changed and that no extra line can appear in the drawing, whereas
both features could be useful, especially for abstraction [Barla et al.
2005].

Still images. Our approach is currently dedicated to still images
and cannot handle animation properly. In particular, temporal co-
herence issues arise with view-dependent lines such as silhouettes,
whose position on the surface, geometry, and even topology change
from frame to frame resulting in visual artifacts. Techniques exist
to maintain temporal coherence by propagating parameterization
from frame to frame [Kalnins et al. 2003]. However, most of the
time this would force the system to disregard the style specification.
This then requires a compromise between style specifications and
temporal coherence. For this reason, we found it preferable to fo-
cus on static images as we think that current techniques designed
to maintain temporal coherence do not suit our application. The
next section includes some thoughts about an alternative approach
to temporal coherence.

7.3 Future Work

Here are several directions for future work we would like to explore.

Generalize the programmable approach. Our system is currently
limited to contour drawings but many other aspects of NPR could
benefit from a programmable approach. We find especially interest-
ing the research of programmable operators for stylized depiction
of regions, as studied by Eisemann et al. [2008]. A programmable
mark back end could also be of great interest. Finally, feature line
extraction itself could be made programmable so as to facilitate the
exploration of new feature lines.

Temporal coherence. As explained earlier, we believe that exist-
ing techniques [Kalnins et al. 2003; Bourdev 1998] are too intru-
sive for a system like ours. We would like to leave the decisions
relative to temporal coherence to the user: in the context of an ani-
mated sequence (rather than an interactive session), visibility events,
which are the source of temporal discontinuities, could be added as

parameters to the operators. The user could then account for tem-
poral events in the style description. The time management would
therefore be a full part of the pictorial style.

APPENDIX

A. Proof for Property 3.3

PROOF. We prove this property by using the inverse function
theorem to show that the perspective projection is a local C1 diffeo-
morphism from � to γ except at cusp points.

For two 1-dimensional smooth manifolds M and N , the local
inverse function theorem states that for a C1 map h from M to N
and for a point r ∈ M such that the derivative Dh of h is nonzero at r ,
there exists an open neighborhood U of r such that h|U : U → h(U )
is a C1 diffeomorphism. By writing � in its parametric form

r : I ⊂ R −→ R
3

t �−→ (x(t), y(t), z(t))

the perspective projection from � to γ is a C∞ map that can be
defined as

h : � −→ γ

(x(t), y(t), z(t)) �−→
(

x(t)
z(t) ,

y(t)
z(t)

)
.

Let us now study the derivative Dh of h along �. Note that at a
given point r of �, Dh is a linear map from the tangent space T �r
of � around r to the tangent space T γh(r ) to γ around the projection
of r and that both of these spaces are of dimension 1.

The derivative of h at a point r of � is D(h ◦ r )(t), which can
also be written as Dh(r ) · Dr (t) where Dr (t) = (x ′, y′, z′) is the
tangent of � at r and Dh(r ) is the Jacobian matrix of the perspective
projection at r

Dh(x, y, z) =
( 1

z 0 − x
z2

0 1
z − y

z2

)
.

Since � is a regular curve, Dr (t) is nonnull. Therefore

Dh(r ) · Dr (t) = 0 ⇔
( 1

z 0 − x
z2

0 1
z − y

z2

)
· (x ′, y′, z′)T = 0

⇔
{ x ′

z′ = x
z

y′
z′ = y

z

.

In other words, the derivative of the perspective projection along
� vanishes at a point r only when the tangent to � at r is collinear
to the view direction, that is, when r is a cusp. As a result, if both �
and γ are 1-manifolds, after the inversion theorem, the perspective
projection is a C1 diffeomorphism between a line generator � and
its projection γ except at cusp points.

This means that, outside cusps, a parameterization of γ is a repa-
rameterization of �. Consequently, a quantity that is C1 on � is also
C1 on γ .

ACKNOWLEDGMENT

Thanks to E. Eisemann for helping us formulate our ideas on access
to scene property values and to T. Judd for proof-reading the final
version of this document. Thanks also to the anonymous reviewers
whose comments helped improve this document considerably. M.
Curioni, J.-L. Peurière and T. Kajiyama are to be praised for under-
taking the heroic task of integrating Freestyle to the open source 3D
package Blender.

ACM Transactions on Graphics, Vol. 29, No. 2, Article 18, Publication date: March 2010.



Programmable Rendering of Line Drawing from 3D Scenes • 18:19

REFERENCES

APODACA, A. AND GRITZ, L., Eds. 1999. Advanced Renderman : Cre-
ating CGI for Motion Pictures. Morgan Kaufmann.

APPEL, A. 1967. The notion of quantitative invisibility and the machine
rending of solids. In Proceedings of the 22nd National Conference. ACM
Press, 387–393.

BARLA, P., THOLLOT, J., AND SILLION, F. 2005. Geometric clustering
for line drawing simplification. In Proceedings of the Eurographics Sym-
posium on Rendering.

BEAZLEY, D. M. 1996. SWIG: an easy to use tool for integrating scripting
languages with C and C++. In Proceedings of the 4th Annual Tcl/Tk
Workshop. USENIX, 129–139.

BOURDEV, L. 1998. Rendering nonphotorealistic strokes with temporal
and arc-length coherence. M.S. thesis, Brown University.

CIPOLLA, R. AND GIBLIN, P. 2000. Visual Motion of Curves and Surfaces.
Cambridge University Press. Cambridge, UK.

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S., FINKELSTEIN,
A., FUNKHOUSER, T., AND RUSINKIEWICZ, S. 2008. Where do people
draw lines? ACM Trans. Graph. 27, 3.

COLE, F., SANIK, K., DECARLO, D., FINKELSTEIN, A., FUNKHOUSER, T.,
RUSINKIEWICZ, S., AND SINGH, M. 2009. How well do line drawings
depict shape? ACM Trans. Graph. 28.

COOK, R. L. 1984. Shade trees. In Proceedings of the SIGGRAPH
Conference.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA, A.
2003. Suggestive contours for conveying shape. ACM Trans.
Graph. 22, 3.

DECARLO, D. AND RUSINKIEWICZ, S. 2007. Highlight lines for con-
veying shape. In Proceedings of the International Symposium on Non-
Photorealistic Animation and Rendering (NPAR).

DECARLO, D. AND SANTELLA, A. 2002. Stylization and abstraction of
photographs. ACM Trans. Graph. 21, 3.
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